The parameter values are:

	u_{1}	u_{2}	u_{3}	x	z
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	0.208 ± 0.004	0.412 ± 0.008	0.337	0.285	0.742
$\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	0.208 ± 0.004	0.412 ± 0.008	0.333	0.279	0.753

Table 2 lists calculated and observed intensities for $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. The former were obtained using the formula

$$
I \propto|F|^{2} p \frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}
$$

where p is the permutation factor. The observed intensities were measured using the Norelco Spectrometer.

Discussion of the structure

The tetrahedral configuration of four oxygen atoms (one O_{I} and three $\mathrm{O}_{\text {II }}$) about phosphorus with

$$
\mathrm{P}-\mathrm{O}_{\mathrm{I}}=\mathrm{P}-\mathrm{O}_{\mathrm{II}}=1.56 \mathrm{~A}
$$

was assumed. The configuration of oxygen atoms about barium and strontium atoms is as follows:

$$
\begin{aligned}
& \mathrm{Ba}_{\mathrm{I}}-6 \mathrm{O}_{\mathrm{I}}=3.23 \mathrm{~A} ., \mathrm{Ba}_{\mathrm{I}}-6 \mathrm{O}_{\mathrm{II}}=2.80 \mathrm{~A} ., \\
& \mathrm{Ba}_{\mathrm{II}^{-}}-1 \mathrm{O}_{\mathrm{I}}=2.71 \mathrm{~A} ., \mathrm{Ba}_{\mathrm{II}}-3 \mathrm{O}_{\mathrm{II}}=2.80 \mathrm{~A} ., \\
& \mathrm{Ba}_{\mathrm{II}^{-}}-6 \mathrm{O}_{\mathrm{II}}=2.83 \mathrm{~A} . ; \\
& \mathrm{Sr}_{\mathrm{I}}-6 \mathrm{O}_{\mathrm{I}}=3 \cdot 10 \mathrm{~A} ., \mathrm{Sr}_{\mathrm{I}}-6 \mathrm{O}_{\mathrm{II}}=2.63 \mathrm{~A} ., \\
& \mathrm{Sr}_{\mathrm{II}}-1 \mathrm{O}_{\mathrm{I}}=2.48 \mathrm{~A} ., \mathrm{Sr}_{\mathrm{II}}-3 \mathrm{O}_{\mathrm{II}}=2.62 \mathrm{~A} ., \\
& \mathrm{Sr}_{\mathrm{II}}-6 \mathrm{O}_{\mathrm{II}}=2.72 \mathrm{~A} .
\end{aligned}
$$

Thus barium or strontium atoms of the first kind show co-ordination number twelve, barium and strontium atoms of the second kind co-ordination number ten. The total strength of the bonds ending on O_{I} is 1.95 and on $\mathrm{O}_{\text {II }} 2.02$.

The observed mean interionic distances and those calculated from ionic radii (Zachariasen, 1931) agree reasonably well as shown below:

	Observed	Calculated
$\mathrm{Ba}_{\mathrm{I}}-\mathrm{O}$	3.01 A.	2.96 A.
$\mathrm{Ba}_{\mathrm{I}}-\mathrm{O}$	2.81	2.90
$\mathrm{Ba}_{\mathrm{I}} \mathrm{O}$ mean	2.88	2.92
$\mathrm{Sr}_{\mathrm{I}}-\mathrm{O}$	2.86	2.78
$\mathrm{Sr}_{\mathrm{I}}-\mathrm{O}$	2.67	2.72
$\mathrm{Sr}-\mathrm{O}$ mean	2.73	2.74

In view of the close crystal chemical similarity of lead to strontium and barium it was attempted to prepare the isostructural lead compound. These efforts were unsuccessful.

The writer wishes to thank Miss Anne Plettinger for having taken the X-ray diffraction patterns, and Mr H. B. Evans for having made the chemical preparations, the chemical analyses and the direct density determinations.

References

West, J. (1930). Z. Krystallogr. 74, 306.
Zachartasen, W. H. (1931). Z. Krystallogr. 80, 137.

Acta Cryst. (1948). 1, 265

Crystal Chemical Studies of the $5 f$-Series of Elements. I. New Structure Types

By W. H. Zachariasen
Argonne National Laboratory and the Department of Physics, University of Chicago, Illinois, U.S.A.

(Received 14 August 1948)
The paper gives brief descriptions of new structure types observed for simple compounds of the $5 f$-series of elements and of related elements.

Introduction

In the course of the last five years the writer has determined the crystal structures of a number of compounds of thorium, of uranium, of the transuranic elements, and of the rare elements actinium and protactinium. The work was started in the Manhattan Project and has been continued in the Argonne National Laboratory after the war.

The crystal-structure studies of compounds of the new and rare elements were undertaken for the main purpose of determining the chemical identity of the various micro-preparations, so that the basic chemistry of these elements could be deduced at a time when only microgram amounts were available. In most instances it became necessary to carry out at least a partial
crystal-structure determination before the chemical identity of the substance could be ascertained.

This is the first of a series of articles bearing the general title 'Crystal Chemical Studies of the $5 f$ Series of Elements' in which the results of these investigations will be reported. Most of the articles will describe the crystal-structure determination of groups of compounds or of individual compounds. Other articles in the series will contain general discussions of the crystal chemistry of the $5 f$-series of elements. A few of the articles will, like the present one, summarize crystal-structure results which have been obtained.

All the structures described in this article were deduced from X-ray diffraction patterns of crystal powders. Only in two instances, PuCl_{3} and $\mathrm{Na}_{3} \mathrm{UF}_{7}$,
did single crystals subsequently become available. A number of the structures contain light atoms such as oxygen and fluorine. In some cases it was possible to deduce the positions of the light atoms solely from intensity calculations, in other cases it was necessary to make use of considerations based upon interatomic distances.

The information given about the various structure types include the unit-cell dimensions, the number of stoichiometric molecules per unit cell (n), the space group, the atomic positions and the interatomic distances. In giving the atomic positions the nomenclature of the International Tables for the Determination of Crystal Structures is used. A statement such as $\mathrm{U}-9 \mathrm{Cl}=2.96 \mathrm{~A}$. implies that each uranium atom is bonded to nine chlorine atoms at a mean distance of 2.96 A.

Structure type: UCl_{3}

Hexagonal; $n=2$; space group: $C \dot{6}_{3} / m-C_{6 n}^{2}$.
2 U in $2(a)$.
6 Cl in $6(h)$, with $x=0.375, y=0.292$.
$\mathrm{U}-9 \mathrm{Cl}=2 \cdot 96 \mathrm{~A}$.
The unit-cell dimensions are:

	$\begin{gathered} a_{1} \\ (\mathrm{kX} .) \end{gathered}$	$\begin{gathered} a_{3} \\ \text { (kX.) } \end{gathered}$
AcCl_{3}	7.62 ± 0.02	4.55 ± 0.02
UCl_{3}	7.428 ± 0.003	$4 \cdot 312 \pm 0.003$
NpCl_{3}	$7 \cdot 405 \pm 0.010$	$4 \cdot 273 \pm 0.005$
PuCl_{3}	$7 \cdot 380 \pm 0.001$	4.238 ± 0.001
AmCl_{3}	7.37 ± 0.01	4.24 ± 0.01
LaCl_{3}	$7 \cdot 468 \pm 0.003$	$4 \cdot 36 \overline{ \pm} \pm 0.003$
CeCl_{3}	$7 \cdot 436 \pm 0.004$	$4 \cdot 304 \pm 0 \cdot 004$
PrCl_{3}	$7 \cdot 41 \pm 0.01$	4.25 ± 0.01
NdCl_{3}	7.381 ± 0.004	$4 \cdot 231 \pm 0.003$
AcBr_{3}	8.06 ± 0.04	4.68 ± 0.02
UBr_{3}	7.926 ± 0.002	$4 \cdot 432 \pm 0.002$
$\alpha-\mathrm{NpBr}_{3}$	7.917 ± 0.005	$4 \cdot 382 \pm 0.005$
LaBr_{3}	7.951 ± 0.003	$4 \cdot 501 \pm 0.003$
CeBr_{3}	7.936 ± 0.003	$4 \cdot 435 \pm 0.003$
PrBr_{3}	7.92 ± 0.01	4.38 ± 0.01
$\mathrm{La}(\mathrm{OH})_{3}$	6.510 ± 0.005	$3 \cdot 843 \pm 0.005$
$\stackrel{\mathrm{Pr}(\mathrm{OH}}{3})_{3}$	6.47 ± 0.03	3.76 ± 0.03
$\mathrm{Nd}(\mathrm{OH})_{3}$	$6 \cdot 42 \pm 0.02$	$3 \cdot 74 \pm 0.02$

Structure type: $\mathbf{P u B r}_{3}$

Orthorhombic; $n=4$; space group: $C c m m-D_{2 h}^{17}$.
4 Pu in $4(c)$, with $x=0.25$.
$4 \mathrm{Br}_{\mathrm{I}}$ in $4(c)$, with $x=-0.07$.
$8 \mathrm{Br}_{\mathrm{II}}$ in $8(f)$, with $x=0.36, z=-0.05$.
$\mathrm{Pu}-8 \mathrm{Br}=3.08 \mathrm{~A}$.
This is a layer structure with layers normal to a_{1}. The unit-cell dimensions are:

	$\begin{gathered} a_{1} \\ (\mathrm{kX} .) \end{gathered}$	$\begin{gathered} a_{\mathbf{2}} \\ (\mathrm{kX} .) \end{gathered}$	$\begin{gathered} a_{3} \\ (\mathrm{kX} .) \end{gathered}$
$\beta \cdot \mathrm{NpBr}_{3}$	12.65 ± 0.05	$4 \cdot 11 \pm 0.03$	9.15 ± 0.04
PuBr_{3}	$12 \cdot 62 \pm 0.05$	$4 \cdot 09 \pm 0.03$	$9 \cdot 13 \pm 0.04$
AmBr_{3}	12.6 ± 0.1	$4 \cdot 10 \pm 0.04$	$9 \cdot 10 \pm 0.05$
NdBr_{3}	$12 \cdot 63 \pm 0.05$	$4 \cdot 10 \pm 0 \cdot 03$	$9 \cdot 15 \pm 0.04$
SmBr_{3}	12.62 ± 0.05	4.03 ± 0.03	$9 \cdot 06 \pm 0.04$
UH_{3}	$13 \cdot 98 \pm 0.06$	$4 \cdot 31 \pm 0 \cdot 03$	9.99 ± 0.05
NpI_{3}	$14 \cdot 00 \pm 0 \cdot 06$	$4 \cdot 29 \pm 0.03$	9.93 ± 0.05
PuI_{3}	$14 \cdot 00 \pm 0.06$	$4 \cdot 29 \pm 0 \cdot 03$	9.90 ± 0.05
AmI_{3}	$14 \cdot 0 \pm 0 \cdot 1$	4.30 ± 0.05	$9 \cdot 9 \pm 0 \cdot 1$
LaI_{3}	$14 \cdot 1 \pm 0 \cdot 1$	$4 \cdot 33 \pm 0 \cdot 05$	$10 \cdot 05 \pm 0 \cdot 10$

Structure type: $\mathrm{Ce}_{2} \mathrm{~S}_{3}$

Cubic; $n=16 / 3$; space group: $I \overline{4} 3 d-T_{d}^{6}$.
$10 \frac{2}{3}-12 \mathrm{Ce}$ in $12(a)$.
16 S in $16(c)$, with $x=0 \cdot 083$.
$\mathrm{Ce}-8 \mathrm{~S}=2.98 \mathrm{~A}$.
The ideal composition is $\mathrm{Ce}_{3} \mathrm{~S}_{4}$ with $n=4$.
The unit-cell dimensions are:

	a
	(kX)
$\mathrm{Ac}_{2} \mathrm{~S}_{3}$	8.97 ± 0.01
$\mathrm{Pu}_{3} \mathrm{~S}_{3}$	8.4373 ± 0.0005
$\mathrm{Am}_{3} \mathrm{~S}_{3}$	8.428 ± 0.002
$\mathrm{LL}_{2} \mathrm{~S}_{3}$	8.706 ± 0.001
$\mathrm{CB}_{2} \mathrm{~S}_{3}$	8.6173 ± 0.0005
$\mathrm{Ce}_{3} \mathrm{~S}_{4}$	8.6076 ± 0.0005

Structure type: $\beta_{2}-\mathrm{Na}_{2} \mathrm{ThF}_{6}$
Hexagonal; $n=1$; space group: $C 32-D_{3}^{2}$.
2 Na in $2(d)$, with $z=0.385$.
1 Th in $1(a)$.
3 F in $3(e)$, with $x=0 \cdot 600$.
3 F in $3(f)$, with $x=0 \cdot 250$.
$\mathrm{Na}-6 \mathrm{~F}=2.33 \mathrm{~A} ., \quad \mathrm{Th}-9 \mathrm{~F}=2.41 \mathrm{~A}$.
For the isomorphous compounds $\mathrm{NaPuF}_{4}, \mathrm{NaLaF}_{4}$, $\mathrm{NaCeF}_{4}, n=\frac{3}{2}$ with $1.5 \mathrm{Na}+0.5 \mathrm{Pu}$ in $2(d)$ and 1 Pu in $1(a)$.

The unit-cell dimensions are:

	$\begin{gathered} a_{1} \\ (\mathrm{kX} .) \end{gathered}$	$\begin{gathered} a_{3} \\ (\mathrm{kX.} .) \end{gathered}$
$\beta_{\mathrm{a}}-\mathrm{Na}_{2} \mathrm{ThF}_{6}$	5.977 ± 0.005	3.827 ± 0.005
$\beta_{2}-\mathrm{K}_{2} \mathrm{UF}_{6}$	6.53 ± 0.02	4.04 ± 0.01
$\beta_{2}-\mathrm{Na}_{2} \mathrm{UF}_{6}$	5.94 ± 0.01	3.74 ± 0.01
NaPuF_{4}	6.117 ± 0.006	3.746 ± 0.004
NaLaF_{4}	$6 \cdot 167 \pm 0.001$	$3 \cdot 819 \pm 0.002$
NaCeF_{4}	$6 \cdot 140 \pm 0.001$	3.770 ± 0.001

Structure type: $\boldsymbol{\beta}_{\mathbf{1}}-\mathrm{K}_{\mathbf{2}} \mathrm{UF}_{6}$

Hexagonal; $n=1$; space group: $C \overline{6} 2 m-D_{3 h}^{3}$.
2 K in $2(d)$.
1 U in $1(a)$
3 F in $3(f)$, with $x=0 \cdot 640$.
3 F in $3(g)$, with $x=0.220$.
$\mathrm{K}-9 \mathrm{~F}=2.73 \mathrm{~A}$., $\mathrm{U}-9 \mathrm{~F}=2.36 \mathrm{~A}$.
$n=\frac{3}{2}$ for isomorphous compounds KXF_{4} with 1.5 K $+0.5 X$ in $2(d)$ and $1 X$ in $1(a)$.
The unit-cell dimensions are:

	a_{1}	a_{3}
	(kX)	(kX)
$\beta_{1}-\mathrm{K}_{2} \mathrm{ThF}_{6}$	$6 \cdot 565 \pm 0.002$	3.815 ± 0.001
$\beta_{1}-\mathrm{K}_{2} \mathrm{UF}_{6}$	6.53 ± 0.01	$3 \cdot 77 \pm 0.01$
$\beta_{1}-\mathrm{KLaF}_{4}$	$6 \cdot 524 \pm 0.001$	$3.79 \pm \pm 0 \cdot 001$
$\beta_{1}-\mathrm{KCeF}_{4}$	6.496 ± 0.001	3.750 ± 0.001

Structure type: $\mathrm{Ce}_{2} \mathrm{O}_{2} \mathrm{~S}$

Hexagonal; $n=1$; space group: $C \overline{3} m-D_{3 d}^{3}$.
2 Ce in $2(d)$, with $z=0 \cdot 208$.
1 S in $1(b)$.
20 in $2(d)$, with $z=-0 \cdot 137$.
$\mathrm{Ce}-3 \mathrm{~S}=3.04 \mathrm{~A}$., $\quad \mathrm{Ce}-4 \mathrm{O}=2.36 \mathrm{~A}$.
The structure is closely related to that of $\mathrm{La}_{2} \mathrm{O}_{3}$. The unit-cell dimensions are:

	a_{1}	a_{3}
	(kX)	(kX)
$\mathrm{Pu}_{2} \mathrm{O}_{2} \mathrm{~S}$	$3 \cdot 919 \pm 0 \cdot 003$	$6 \cdot 755 \pm 0 \cdot 010$
$\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}$	$4 \cdot 03 \pm 0 \cdot 02$	$6 \cdot 88 \pm 0 \cdot 04$
$\mathrm{Ce}_{2} \mathrm{O}_{2} \mathrm{~S}$	$4 \cdot 00 \pm 0.01$	$6 \cdot 82 \pm 0 \cdot 03$

Structure type: $\mathbf{C a}\left(\mathrm{UO}_{2}\right) \mathrm{O}_{\mathbf{2}}$

Rhombohedral; $n=1$; space group: $R \overline{3} m-D_{3 d}^{5}$.
1 Ca in $1(b)$.
1 U in $1(a)$.
$2 \mathrm{O}_{\mathrm{I}}$ in $2(c)$, with $x=0 \cdot 109$.
$2 \mathrm{O}_{\text {II }}$ in $2(c)$, with $x=0.361$.
$\mathrm{Ca}-8 \mathrm{O}=2.45 \mathrm{~A}$., $\mathrm{U}-2 \mathrm{O}_{\mathrm{I}}=1.91 \mathrm{~A}$., $\mathrm{U}-6 \mathrm{O}_{\mathrm{II}}=2.29 \mathrm{~A}$.
The structure contains linear uranyl groups $\mathrm{O}-\mathrm{U}-\mathrm{O}$.
The unit-cell dimensions are:

	a	α
	(kX)	
CaUO_{4}	6.254 ± 0.001	$36^{\circ} 2^{\prime} \pm \mathrm{I}^{\prime}$
SrUO_{4}	6.53 ± 0.03	$35^{\circ} 3^{\prime} \pm 20^{\prime}$

Structure type: $\mathbf{U O}_{\mathbf{2}} \mathbf{F}_{\mathbf{2}}$

Rhombohedral; $n=1$; space group: $R \overline{3} m-D_{3 d}^{5}$.

$$
\begin{aligned}
& a=5.764 \pm 0.001 \mathrm{kX} ., \quad \alpha=42^{\circ} 43^{\prime} \pm 3^{\prime} . \\
& 1 \mathrm{U} \text { in } 1(a) . \\
& 2 \mathrm{O} \text { in } 2(c) \text {, with } x=0.122 . \\
& 2 \mathrm{~F} \text { in } 2(c) \text {, with } x=0.294 . \\
& \mathrm{U}-2 \mathrm{O}=1.91 \mathrm{~A} . \text { (assumed), } \mathrm{U}-6 \mathrm{~F}=2.50 \mathrm{~A} .
\end{aligned}
$$

This is a typical layer structure. There is stacking disorder.

Structure type: $\mathrm{U}_{2} \mathrm{~F}_{\mathbf{9}}$

Cubic; $n=4$; space group: $I \overline{4} 3 m-T_{d}^{3}$.
8 U in $8(c)$, with $x=0 \cdot 187$.
12 F in $12(e)$, with $x=0.225$.
24 F in $24(g)$, with $x=0 \cdot 20, z=0 \cdot 46$.
$\mathrm{U}-9 \mathrm{~F}=2.31 \mathrm{~A}$.
In the isomorphous compound $\mathrm{NaTh}_{2} \mathrm{~F}_{9}$ the six holes $6(b)$ are occupied by four sodium atoms.
The unit-cell dimensions are:
a
(kX.)
$\mathrm{U}_{2} \mathrm{~F}_{9}$
$\mathrm{NaTh}_{2} \mathrm{~F}_{9}$
8.4545 ± 0.0005
8.705 ± 0.001

Structure type: $\alpha-\mathrm{UF}_{5}$

Tetragonal; $n=2$; space group: $I 4 / m-C_{4 n}^{5}$.
$a_{1}=6.512 \pm 0.001 \mathrm{kX} ., a_{3}=4.463 \pm 0.001 \mathrm{kX}$.
2 U in $2(a)$.
$2 \mathrm{~F}_{\mathrm{I}}$ in $2(b)$.
$8 \mathrm{~F}_{\mathrm{II}}$ in $8(h)$, with $x=0 \cdot 32, y=0 \cdot 11$.
$\mathrm{U}-2 \mathrm{~F}_{\mathrm{I}}=2 \cdot 23 \mathrm{~A}$., $\mathrm{U}-4 \mathrm{~F}_{\mathrm{II}}=2 \cdot 20 \mathrm{~A}$.
There are strings of UF_{6} octahedra along a_{3}.

Structure type: $\beta-\mathrm{UF}_{5}$

Tetragonal; $n=8$; space group: $I \overline{4} 2 d-D_{2 d}^{12}$.
$a_{1}=11 \cdot 450 \pm 0.002 \mathrm{kX}$., $a_{3}=5 \cdot 198 \pm 0.001 \mathrm{kX}$.
8 U in $8(d)$, with $x=0.083$.
$8 \mathrm{~F}_{\mathrm{I}}$ in $8(d)$, with $x=0 \cdot 278$.
$16 \mathrm{~F}_{\text {II }}$ in $16(e)$, with $x=0.167, y=0.083, z=0$.
$16 \mathrm{~F}_{\mathrm{III}}$ in $16(e)$, with $x=0.042, y=0 \cdot 125, z=0 \cdot 445$. $\mathrm{U}-7 \mathrm{~F}=2.23 \mathrm{~A}$.

Structure type: $\boldsymbol{\gamma}-\mathrm{Na}_{2} \mathrm{UF}_{6}$

Orthorhombic; $n=2$; space group: $\operatorname{Immm}-D_{2 h}^{25}$.
$a_{1}=5.54 \pm 0.01 \mathrm{kX} ., a_{2}=4.01 \pm 0.01 \mathrm{kX}$., $a_{3}=11.67 \pm 0.02 \mathrm{kX}$.
2 U in $2(a)$.
4 Na in $4(i)$, with $z=\frac{1}{3}$.
$4 \mathrm{~F}_{\mathrm{I}}$ in $4(f)$, with $x=\frac{1}{4}$.
$8 \mathrm{~F}_{\mathrm{II}}$ in $8(m)$, with $x=\frac{1}{4}, z=\frac{1}{6}$.
$\mathrm{Na}-8 \mathrm{~F}=2.38 \mathrm{~A}$., $\mathrm{U}-8 \mathrm{~F}=2.38 \mathrm{~A}$.

Structure type: $\mathrm{Na}_{3} \mathrm{UF}_{7}$

Tetragonal; $n=2$; space group: $I 4 / m m m-D_{4 h}^{17}$.
$a_{1}=5.448 \pm 0.007 \mathrm{kX} ., \quad a_{3}=10.896 \pm 0.014 \mathrm{kX}$.
2 U in $2(a)$.
$2 \mathrm{Na}_{\mathrm{I}}$ in $2(b)$.
$4 \mathrm{Na}_{\text {II }}$ in $4(d)$.
14 F in $16(m)$, with $x=\frac{1}{4}, z=\frac{1}{8}$.
$\mathrm{Na}-7 \mathrm{~F}=2 \cdot 36 \mathrm{~A} ., \quad \mathrm{U}-7 \mathrm{~F}=2 \cdot 36 \mathrm{~A}$.
The structure is closely related to that of fluorite.

Structure type: UCl $_{6}$

Hexagonal; $n=3$; space group: $C \overline{3} m-D_{3 d}^{3}$.
$a_{1}=10.95 \pm 0.02 \mathrm{kX} ., \quad a_{3}=6.03 \pm 0.01 \mathrm{kX}$.
$1 \mathrm{U}_{\mathrm{I}}$ in $\mathrm{l}(a)$.
$2 \mathrm{U}_{\mathrm{II}}$ in $2(d)$, with $z=\frac{1}{2}$.
$6 \mathrm{Cl}_{\mathrm{I}}$ in $6(i)$, with $x=0 \cdot 10, z=\frac{1}{4}$.
$6 \mathrm{Cl}_{\text {II }}$ in $6(i)$, with $x=0 \cdot 43, z=\frac{1}{4}$.
$6 \mathrm{Cl}_{\text {III }}$ in $6(i)$, with $x=0 \cdot 77, z=\frac{1}{4}$.
$\mathrm{U}-6 \mathrm{Cl}=2 \cdot 42 \mathrm{~A}$.
This is a typical molecular structure.

Structure type: $\mathbf{U}_{3} \mathrm{Si}_{2}$
Tetragonal; $n=2$; space group: $P 4 / m b m-D_{4 n}^{5}$.
$a_{1}=7.3151 \pm 0.0004 \mathrm{kX} ., \quad a_{3}=3.8925 \pm 0.0005 \mathrm{kX}$. $2 \mathrm{U}_{\mathrm{I}}$ in $2(a)$.
$4 \mathrm{U}_{\mathrm{II}}$ in $4(h)$, with $x=0 \cdot 181$.
4 Si in $4(g)$, with $x=0.389$.
$\mathrm{U}_{\mathrm{I}}-4 \mathrm{Si}=2.96$ A., $\mathrm{U}_{\mathrm{I}}-8 \mathrm{U}_{\mathrm{II}}=3.32 \mathrm{~A} .$,
$\mathrm{U}_{\mathrm{II}}-6 \mathrm{Si}=2.92$ A., $\mathrm{U}_{\mathrm{II}}-4 \mathrm{U}_{\mathrm{I}}=3.32$ A.,
$\mathrm{Si}-1 \mathrm{Si}=2 \cdot 30 \mathrm{~A}$.
The structure contains pairs of Si atoms.

Structure type: $\mathrm{U}_{3} \mathbf{S i}$

Tetragonal; $n=4$; space group: $I 4 / m c m-D_{4 h}^{18}$.
$a_{1}=6.017 \pm 0.002 \mathrm{kX} ., \quad a_{3}=8.679 \pm 0.003 \mathrm{kX}$.
$4 \mathrm{U}_{\mathrm{I}}$ in $4(a)$.
$8 \mathrm{U}_{\mathrm{II}}$ in $8(h)$, with $x=0 \cdot 231$.
4 Si in $4(b)$.
$\mathrm{U}_{\mathrm{I}}-4 \mathrm{Si}=3.01 \mathrm{~A} ., \quad \mathrm{U}_{\mathrm{I}}-8 \mathrm{U}_{\mathrm{II}}=3.04 \mathrm{~A} .$,
$\mathrm{U}_{\mathrm{II}}-2 \mathrm{Si}=2.92 \mathrm{~A} ., \quad \mathrm{U}_{\mathrm{II}}-2 \mathrm{Si}=3.17 \mathrm{~A}$.,
$\mathrm{U}_{\mathrm{II}}-4 \mathrm{U}_{\mathrm{II}}=3.02 \mathrm{~A}$., $\quad \mathrm{U}_{\mathrm{II}}-4 \mathrm{U}_{\mathrm{I}}=3.04 \mathrm{~A}$.
The structure is closely related to that of AuCu_{3}.
Structure type: $\alpha-\mathrm{UO}_{3}$
Hexagonal; $n=1$; space group: $C \overline{3} m-D_{3 d}^{3}$.
$a_{1}=3.963 \pm 0.004 \mathrm{kX} ., \quad a_{3}=4.160 \pm 0.008 \mathrm{kX}$. 1 U in $1(a)$.
$1 \mathrm{O}_{\mathrm{I}}$ in $\mathrm{l}(b)$.
$2 \mathrm{O}_{\mathrm{II}}$ in $2(\mathrm{~d})$, with $z=0 \cdot 17$.
$\mathrm{U}-2 \mathrm{O}_{\mathrm{I}}=2.08 \mathrm{~A} ., \quad \mathrm{U}-6 \mathrm{O}_{\mathrm{II}}=2 \cdot 39 \mathrm{~A}$.
There are endless chains $-\mathrm{O}_{\mathrm{I}}-\mathrm{U}-\mathrm{O}_{\mathrm{I}}-\mathrm{U}$ - along a_{3}.
The orthorhombic $\mathrm{U}_{3} \mathrm{O}_{8}$ structure is closely related.

Remarks

The compounds of actinium, neptunium, plutonium and americium referred to in this paper were first prepared by various investigators as follows:

Sherman Fried and F. Hagemann: $\mathrm{AcCl}_{3}, \mathrm{AcBr}_{3}$, $\mathrm{Ac}_{2} \mathrm{~S}_{3}$.

Sherman Fried: $\mathrm{AmCl}_{3}, \alpha-\mathrm{NpBr}_{3}, \mathrm{AmBr}_{3}, \mathrm{NpI}_{3}$, $\mathrm{AmI}_{3}, \mathrm{Am}_{2} \mathrm{~S}_{3}$.

Sherman Fried and N. R. Davidson: NpCl_{3}.
I. Sheft: $\beta-\mathrm{NpBr}_{3}$.
F. Hagemann: $\mathrm{PuCl}_{3}, \mathrm{PuI}_{3}$.
N. R. Davidson: $\mathrm{Pu}_{2} \mathrm{O}_{2} \mathrm{~S}, \mathrm{Pu}_{2} \mathrm{~S}_{3}$.
E. K. Hyde: PuBr_{3}.
H. L. Baumbach: NaPuF_{4}.

With the single exception of PuBr_{3} all of the compounds listed above were first identified by the writer through interpretation of the X-ray diffraction patterns.

Miss Anne Plettinger gave valuable aid by taking all of the powder diffraction patterns.

Crystal Chemical Studies of the $5 \mathbf{f}$-Series of Elements. II. The Crystal Structure of $\mathbf{C s}_{2} \mathrm{PuCl}_{6}$

By W. H. Zachariasen
Argonne National Laboratory and the Department of Physics, University of Chicago, Illinois, U.S.A.

(Received 22 July 1948)
$\mathrm{Cs}_{2} \mathrm{PuCl}_{6}$ is trigonal and has the $\mathrm{K}_{2} \mathrm{GeF}_{6}$-type of structure. The unit-cell dimensions are:

$$
a_{1}=7.43 \pm 0.01 \mathrm{kX} ., \quad a_{3}=6.03 \pm 0.01 \mathrm{kX}
$$

giving a calculated density of $\rho=4 \cdot 10 \mathrm{~g} \cdot \mathrm{~cm} .^{-3}$ Plutonium is bonded to six chlorine atoms at the corners of an octahedron with $\mathrm{Pu}-\mathrm{Cl}=2.62 \mathrm{~A}$. Cesium is bonded to twelve chlorine atoms with $\mathrm{Cs}-\mathrm{Cl}=3.71 \mathrm{~A}$.

The compound $\mathrm{Cs}_{2} \mathrm{PuCl}_{6}$ was first prepared by Herbert H. Anderson,* who also established the identity of the substance by direct chemical analysis. The results given below were obtained using a micro-sample of the original preparation kindly lent to the writer by Dr Anderson.

The sample consisted of a small amount of powdered material in a sealed, thin-walled glass capillary. The powder diffraction photographs were taken with $\mathrm{Cu} K$ radiation filtered through nickel foil.

[^0]Table 1 gives a portion of the diffraction data (up to $\sin ^{2} \theta=0.310$). The observed sine squares correspond to a hexagonal unit cell with dimensions

$$
a_{1}=7.43 \pm 0.01 \mathrm{kX} ., \quad a_{3}=6.03 \pm 0.01 \mathrm{kX}
$$

In this cell there is room for but one molecule $\mathrm{Cs}_{2} \mathrm{PuCl}_{6}$, giving a calculated density $\rho=4 \cdot 10$ g. $\mathrm{cm} .^{-3}$.

Reflections $H_{1} H_{2} 0$ are missing if $H_{1}-H_{2}=3 n \pm 1$. Reflections $H_{1} H_{2} H_{3}$ for which $H_{1}-H_{2}=3 n$ are strong when $H_{3}=0$ or 4 , weak when $H_{3}=1$ or 3 , and missing when $H_{3}=2$. These observations require the cesium positions to be $\pm\left(\frac{2}{3}, \frac{1}{3}, u\right)$ with $u \approx \frac{1}{4}$.

[^0]: * Report ANL-4056 of the Argonne National Laboratory.

